差别

这里会显示出您选择的修订版和当前版本之间的差别。

到此差别页面的链接

两侧同时换到之前的修订记录 前一修订版
后一修订版
前一修订版
古诺模型 [2017/12/04 09:06]
127.0.0.1 外部编辑
古诺模型 [2019/01/06 08:59] (当前版本)
行 1: 行 1:
  
 ====== 古诺模型 ====== ​ ====== 古诺模型 ====== ​
-古诺模型又称古诺双寡头模型(Cournotduopolymodel),或双寡头模型(Duopolymodel),​古诺模型是早期的[[寡头]]模型。它是由法国经济学家[[古诺]]于1838年提出的。古诺模型是[[纳什均衡]]应用的最早版本,古诺模型通常被作为寡头理论分析的出发点。古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去。中文名古诺模型外文名Cournotmodel别    称古诺双寡头模型,双寡头模型提出人安东尼·奥古斯丁·库尔诺(古诺)提出时间1838年 +古诺模型又称古诺双寡头模型(Cournot duopoly model),或双寡头模型(Duopoly model),​古诺模型是早期的[[寡头]]模型。它是由法国经济学家[[古诺]]于1838年提出的。古诺模型是[[纳什均衡]]应用的最早版本,古诺模型通常被作为寡头理论分析的出发点。古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去。 
-===== 目录 ===== + 
 +中文名古诺模型 
 + 
 +外文名:Cournot model 
 + 
 +别称古诺双寡头模型,双寡头模型 
 + 
 +提出人安东尼·奥古斯丁·库尔诺(古诺) 
 + 
 +提出时间1838年
  
-   - 简介 
-   - 假设 
-   - 产量选择 
-   - 价格竞争 
-   - 推广 
 ===== 古诺模型简介 =====  ===== 古诺模型简介 ===== 
 古诺模型是由法国经济学家[[安东尼·奥古斯丁·库尔诺]]于1838年提出的。是[[纳什均衡]]应用的最早版本,古诺模型通常被作为[[寡头]]理论分析的出发点。古诺模型是一个只有两个寡头厂商的简单模型,该模型也被称为“双寡头模型”。该模型阐述了相互竞争而没有相互协调的厂商的产量[[决策]]是如何相互作用从而产生一个位于[[竞争均衡]]和垄断均衡之间的结果。古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去。古诺模型假定一种产品市场只有两个卖者,并且相互间没有任何勾结行为,但相互间都知道对方将怎样行动,从而各自怎样确定最优的产量来实现利润最大化,因此,古诺模型又称为[[双头垄断]]理论。 古诺模型是由法国经济学家[[安东尼·奥古斯丁·库尔诺]]于1838年提出的。是[[纳什均衡]]应用的最早版本,古诺模型通常被作为[[寡头]]理论分析的出发点。古诺模型是一个只有两个寡头厂商的简单模型,该模型也被称为“双寡头模型”。该模型阐述了相互竞争而没有相互协调的厂商的产量[[决策]]是如何相互作用从而产生一个位于[[竞争均衡]]和垄断均衡之间的结果。古诺模型的结论可以很容易地推广到三个或三个以上的寡头厂商的情况中去。古诺模型假定一种产品市场只有两个卖者,并且相互间没有任何勾结行为,但相互间都知道对方将怎样行动,从而各自怎样确定最优的产量来实现利润最大化,因此,古诺模型又称为[[双头垄断]]理论。
 +
 ===== 古诺模型假设 =====  ===== 古诺模型假设 ===== 
 古诺模型分析的是两个出售相同产品的生产成本为零的[[寡头]]厂商的情况。古诺模型的假定是:市场上只有A、B两个厂商生产和销售相同的产品,他们的生产成本为零;他们共同面临的市场的[[需求曲线]]是线性的,A、B两个厂[[商都]]准确地了解市场的需求曲线;A、B两个厂商都是在已知对方产量的情况下,各自确定能够给自己带来最大利润的产量,即每一个厂商都是消极地以自己的产量去适应对方已确定的产量。 古诺模型分析的是两个出售相同产品的生产成本为零的[[寡头]]厂商的情况。古诺模型的假定是:市场上只有A、B两个厂商生产和销售相同的产品,他们的生产成本为零;他们共同面临的市场的[[需求曲线]]是线性的,A、B两个厂[[商都]]准确地了解市场的需求曲线;A、B两个厂商都是在已知对方产量的情况下,各自确定能够给自己带来最大利润的产量,即每一个厂商都是消极地以自己的产量去适应对方已确定的产量。
 +
 ===== 古诺模型产量选择 =====  ===== 古诺模型产量选择 ===== 
 A厂商的[[均衡产量]]为:OQ(1/​2―1/​8―1/​32―……)=1/​3OQB厂商的均衡产量为:OQ(1/​4+1/​16+1/​64+……)=1/​3OQ行业的均衡总产量为:1/​3OQ+1/​3OQ=2/​3OQ A厂商的[[均衡产量]]为:OQ(1/​2―1/​8―1/​32―……)=1/​3OQB厂商的均衡产量为:OQ(1/​4+1/​16+1/​64+……)=1/​3OQ行业的均衡总产量为:1/​3OQ+1/​3OQ=2/​3OQ
 +
 ===== 古诺模型价格竞争 =====  ===== 古诺模型价格竞争 ===== 
 假定两个寡头分别用40元的固定成本生产可以相互替代并且有差别的产品,并假定不存在可变成本,[[边际成本]]为0,两个寡头面临的市场需求数如下:D1:Q1=24-4P1+2P2D2:Q2=24-4P2+2P1π1=P1Q1-40=24P1-4P12+2P1P2-40dπ1/​dP1=24-8P1+2P2=0P1=3+1/​4P2([[寡头]]1的反应函数)同理:P2=3+1/​4P1(寡头2的反应函数)因此,P1=4,P2=4得:Q1=16,Q2=16;π1=24,π2=24。寡头间的这种无勾结行为而达到的这种均衡称为[[古诺均衡]].寡头间若存在着勾结,以求得联合的利润最大化,所得到的均衡为共谋均衡。 假定两个寡头分别用40元的固定成本生产可以相互替代并且有差别的产品,并假定不存在可变成本,[[边际成本]]为0,两个寡头面临的市场需求数如下:D1:Q1=24-4P1+2P2D2:Q2=24-4P2+2P1π1=P1Q1-40=24P1-4P12+2P1P2-40dπ1/​dP1=24-8P1+2P2=0P1=3+1/​4P2([[寡头]]1的反应函数)同理:P2=3+1/​4P1(寡头2的反应函数)因此,P1=4,P2=4得:Q1=16,Q2=16;π1=24,π2=24。寡头间的这种无勾结行为而达到的这种均衡称为[[古诺均衡]].寡头间若存在着勾结,以求得联合的利润最大化,所得到的均衡为共谋均衡。
 +
 ===== 古诺模型推广 =====  ===== 古诺模型推广 ===== 
-以上双头古诺模型的结论可以推广。令[[寡头]]厂商的数量为m,则可以得到一般的结论如下:每个寡头厂商的[[均衡产量]]=市场总容量/​(m+1)行业的均衡总产量=市场总容量·m/​(m+1)古诺模型的缺陷是假定了厂商以竞争对手不改变产量为条件。+以上双头古诺模型的结论可以推广。令[[寡头]]厂商的数量为m,则可以得到一般的结论如下:每个寡头厂商的[[均衡产量]]=市场总容量/​(m+1)行业的均衡总产量=市场总容量·m/​(m+1)古诺模型的缺陷是假定了厂商以竞争对手不改变产量为条件。======古诺模型====== ​  
 +**古诺模型**) 
 + 
 +由法国经济学家古诺于 1838 年在分析双寡头行为时提出的理论模型,因而又被称为“双头模型”。从双寡头的古诺模型可以推广到两个以上的厂商,而成为一般的古诺模型。古诺模型假定: 厂商通过选择产量而不是价格来实现利润最大化,每个厂商都是单独行动,各自确定能够给自己带来最大利润的产量。为了利润最大化,厂商将不断调整产量,在如此作用——反作用的行动持续进行下,市场将趋于一个稳定的均衡。并且随着厂商数目的增加,均衡产量和均衡价格将趋于竞争水平。 
 + 
 +在发电市场中,如果采用优良排序、统一出清的竞价上网方法,已上网的发电商会利用古诺模型调整产量,有意少报少许容量,也就是‘囤积局奇’,即便报价不变,也有可能使原本没有上网的比边际机组更贵的机组进入发电而成为边际机组,从而抬高了统一出清的边际电价,因此获得高收入。当收入的增加大于少报容量的损失时,发电商就会采取这样的策略,这就是典型的古诺博弈策略,相应的模型就是古诺模型